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The effects  of oriented l inear  mac romolecu l e s  a r e  examined in re la t ion  to the v i scos i ty  of 
a polymer  solution in s imple  shear  and in axial ly  s y m m e t r i c  extension. The effective 
v i scos i ty  is  calculated for  a solvent  containing uni formly  distr ibuted r igid rods  or iented 
along the tension axis .  

The flow laws for  po lymer  solutions indicate that the rheological  behavior  is dependent on the mode 
of deformat ion because  flow causes  s t ruc tu ra l  r e a r r angemen t ,  e.g.,  or ientat ion and deformat ion  of the 
mac romolecu le s ,  r e v e r s i b l e  or  i r r e v e r s i b l e  damage,  or fo rmat ion  of supe rmolecu la r  s t ruc tures .  Or ien ta -  
tion is t he  s imples t  and mos t  natural  consequence here.  

Here  I compare  two modes  of deformat ion  frequent ly  used: axia l ly  s y m m e t r i c  extension and s imple  
shear .  In the f i r s t  case ,  the p r e f e r r e d  or ienta t ion always coincides with the shear  direct ion,  while in the 
second the molecules  in the l imi t  l ie in shear  planes,  which l ie at 7r/4 to the tepsion direct ion,  i .e. ,  the 
or ientat ions in these  two cases  a r e  substant ia l ly  different  as r ega rds  the re la t ion  to the principal  axes  of 
the s t r a in  tensor ,  which is espec ia l ly  impor tan t  in re la t ion  to v i scos i ty  effects in such symptoms .  A medium 
containing oriented chains should show induced v i scos i ty  an iso t ropy  dependent on the flow. 

The effective v i scos i ty  of a m a c r o m o l e c u l a r  solution i n c r e a s e s  with the deformat ion  r a t e  in tension 
but d e c r e a s e s  in s imple  shear .  These  opposing effects  can be considered as due to marked  v i scos i ty  an- 
i sot ropy.  T h e p o l y m e r  has leas t  effect on the v i scos i ty  for  shear  in planes para l le l  to the p r e f e r r e d  o r i en -  
tat ion [1], while it is probably l a rges t  for  axia l ly  s y m m e t r i c  tension. 

We consider  these  effects  via the corresponding s imple  hydrodynamic  p rob lem on the bas i s  of the 
following model.  The solvent (viscosity ~?0) contains uni formly  dis tr ibuted r igid cyl indrical  rods  (length l, 
radius  r0, l >> r 0) oriented along the z axis  (see [2] for  the v i scos i ty  of a dilute suspension of v i scoe las t i c  
spheres) .  The solvent adhered to the rods ,  i .e. ,  the speed of the solvent at the sur face  of a rod equals the 
speed of the rod i tself .  The med ium on ave rage  is  subject  to ax ia l ly  s y m m e t r i c  s t r a in  along the z axis  with 
a s t r a in  r a t e  k 0. 

Consider  the motion of the solvent near  a rod via the equations of hydrodynamics:  

Op ( O2v~ O~v~ 1 Or. G )  (1) 
Or =1"1~ ad + ~ q r Or" r ~ ' 

a-~ = ~]~ \ at' + ~ + 7  ar / ' (2) 

av~ + av~ v~ 
ar -&-z + --r =0, (3) 

where  p is  p r e s s u r e ;  we neglect  gravi ta t ional  and iner t ia l  fo rces .  L e t  the axis  of the rod coincide with the 
z axis.  We seek  a solution for  the rad ia l  component  of the ve loc i ty  of the solvent in the f o r m  

v~ = Vr (r). (4) 

Then (3) gives the veloci ty  component along the z axis  as  

v~ = u (~) z, (5) 
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w h e r e  

u (r) = \ Or + " 

W e  e l i m i n a t e  the  p r e s s u r e  f r o m  (1) and (2), and then u s e  (4) and (5) to show tha t  for  vr(r0) = v z ( r  = r0) = 0 
we have  

ro J 

H e r e  ~0 should  be  z e r o  b e c a u s e  OVz/ar ~ 0 a s  V ~ oo. The  v e l o c i t y  d i s t r i b u t i o n  i s  

v, = 2 r In + (6) 

v~ = • In --r  , (7) 
ro 

w h e r e  x i s  a c o n s t a n t  to be  d e t e r m i n e d .  The  a c t i o n  r a d i u s  R i s  the  d i s t a n c e  out to which  the  f low of the  
so lven t  i s  g o v e r n e d  by  the  rod ,  which  i s  de f ined  by  ( r0 /R)  2 = c, w h e r e  c i s  the  v o l u m e  c o n c e n t r a t i o n  of the  
r o d s .  We note  tha t  tt  < l / 2  and tha t  t he  m o d e l  does  not  d e s c r i b e  the  b e h a v i o r  of so lu t i ons  w h o s e  c o n c e n -  
t r a t i o n  i s  c = (2r0 / / )  2 o r  l e s s .  The  m e a n  s t r a i n  r a t e  k 0 can  be  put a s  

2 
= - -  - -  v ,  ( R ) ,  k~ R 

and s u b s t i t u t i o n  f r o m  (6) g i v e s  

k o = • [In R 1 
L r o 2 

W e  put  y = 1 / ( c  - l n c -  t )  to ge t  f r o m  (8) tha t  

i (ro)2] , 
F - ~  \ R ]  = ~ [ c - - l n c - -  11. 

x = 2ko7 , 

w h e r e  y i s  dependen t  only  on the  bu lk  c o n c e n t r a t i o n .  

F r o m  (7) and (9) we  ge t  the  s h e a r  s t r e s s  a t  the  s u r f a c e  of a rod  a s  

Ov~ k o 
%~ (r = to) = % ~ . . . .  = 2 --ro %~z. 

(8) 

(9) 

(10) 

Then  the  f o r c e  ex t end ing  a rod  in the  z s e c t i o n  i s  

U2 

F(z) = 2 ~ro~ arflZ = 1 - ~  nnokoy (P - -  4 z2). (11) 
i 1  

Note tha t  F(z)  i s  not dependen t  on the  r a d i u s  of the  rod  and i s  dependen t  only  on I and the  p r o p o r t i o n  of the  
v o l u m e  f i l l ed  by  the  r o d s .  The  F(z)  a v e r a g e d  o v e r  the  rod  l eng th  i s  

1 
F a v =  - ~  n%ko~?l 2. 

F r o m  (6) and (7) we  ge t  the  v i s c o u s  t e n s i l e  f o r c e  F t fo r  t he  s o l v e n t  in  a c y l i n d e r  of r a d i u s  H: 

Ft = 6 r~rloko Y JR21 n RrZ_2_I RZ +~_1 ro2] ~3mlokoRZ. 

The  fo l lowing  i s  the  s t r e s s  in  the  m e d i u m  a v e r a g e d  o v e r  the  v o l u m e  wi th  a l l o w a n c e  fo r  the  f o r c e s  in the  
r o d s :  

F ' (')21 Oar= nR ~ =3  noko 1+  -0- 7c -~o " 02)  
Fay -F Ft 
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From (12) we see that the rods,  when completely oriented in the tension direction, give an effective v i s -  
cosity 

i.e., the viscosi ty  is increased by a factor  1 + (1/9)~/c(//r0) 2. As would be expected, the precise  effect 
f rom the oriented rods is dependent on c and on l / r  o. 

The calculations show, for example, that c = 0.01 and l / r  o = 100 (a reasonable figure for a polymer) 
imply a viscosi ty  increased by a factor  4 in tension, or by a factor  80 in c = 0.1. 

The viscos i ty  is increased on account of a marked increase  in the t rue s t ra in  ra te  in the solvent 
relat ive to the mean s t ra in  rate for the medium as a whole. This may produce nonlinearity in the relat ion 
of s t ra in  ra te  to s t r e s s  for the solvent, which resul ts  in nonnewtonian flow of the medium as a whole at 
comparat ivelylow average s t ra in  rates.  

Z 

l, r 0 
k0 
P 
V r ,  VZ 

~4 

C 

R 

( r r z  
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Fay - F (z) 

Ft 

ffav 

~Teff 

N O T A T I O N  

is the direction of stretcMng; 
is the viscosi ty  of solvent; 
a re  the length and radius of rod; 
is the averaged deformation rate  of medium; 
is the pressure ;  
a re  the velocity components of solvent; 
is the constant; 
is the volume concentration of rods;  
is the distance at which the rod affects solvent flow; 
is the shear  s t r e ss  at rod surface;  
is the tensile force;  
is the force averaged along rod length; 
is the tensile force  for solvent; 
is the averaged s t ress  in medium; 
is the effective v iscos i ty  of medium. 
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